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1 Additional theoretical results and discussion

1.1 Additional material for Section 3.1 of the paper

The insurer’s problem in the one-period model discussed in Section 3.1 of the paper (admin-
istrative costs but no Medicaid) is

max
πg ,ιg ,πb,ιb

ψ
{
πg − θg

[
λιg + γI(ιg > 0)

]}
+ (1− ψ)

{
πb − θb

[
λιb + γI(ιb > 0)

]}
, (1)

subject to

(PCi) U(θi, πi, ιi)− U(θi, 0, 0) ≥ 0, i ∈ {g, b}, (2)

(ICi) U(θi, πi, ιi)− U(θi, πj, ιj) ≥ 0, i, j ∈ {g, b}, i 6= j, (3)

where λ ≥ 1 captures variable costs and γ ≥ 0 captures fixed costs.
Denote consumption of an individual with risk type i as ciNH in the NH state and cio

otherwise. An individual’s utility function is

U(θi, πi, ιi) =θiu(ω − πi −m+ ιi) + (1− θi)u(ω − πi), (4)

=θiu(ciNH) + (1− θi)u(cio),

and the associated marginal rate of substitution between premium and indemnity is

∂π

∂ι
(θi) = −Uι(·)

Uπ(·)
=

θiu′(ciNH)

θiu′(ciNH) + (1− θi)u′(cio)
≡MRS(θi, πi, ιi). (5)
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Assume that the utility function has the property that MRS(θi, πi, ιi) is strictly increasing
in θi, i ∈ {g, b}. This is true, for example, if u′(·) > 0. Under this assumption, which is
referred to as the single crossing property, any menu of contracts that satisfies incentive
compatibility will have the property that if θi

′
> θi then πi

′ ≥ πi and ιi
′ ≥ ιi.

At the optimal menu, Equation (2) will bind for the good types and Equation (3) will
bind for the bad types. If the optimal menu features positive insurance than it will also
satisfy the two first-order conditions

ψMRS(θg, πg, ιg) + (1− ψ)

[
Uπ(θb, πg, ιg)

Uπ(θb, πb, ιb)
MRS(θg, πg, ιg) +

Uι(θ
b, πg, ιg)

Uπ(θb, πb, ιb)

]
= λψθg, (6)

MRS(θb, πb, ιb) = λθb. (7)

When λ = 1 and γ = 0, the equilibrium menu is standard. This means that it will always
be a separating one with bad types receiving full insurance. When λ > 1 and/or γ > 0, the
optimal menu may be a pooling menu. In the case of γ > 0 and λ = 1 the only type of
pooling menu that can arise is a menu consisting of a single (0, 0) contract (a denial). When
λ > 1 both denials and pooling menus featuring positive insurance can arise. An optimal
pooling menu featuring positive insurance must satisfy

MRS(θg, π, ι) = λη, (8)

U(θg, π, ι)− U(θg, 0, 0) = 0. (9)

These two equations can be derived using from Equations (2), (3), (6) and (7), where π =
πg = πb and ι = ιb = ιb.

For simplicity, the good types’ contract in Figures 1a and 1b in the paper are illustrated
as the optimal pooling contract. Rearranging the first-order conditions, one can show that
Equation (6) is equivalent to

MRS(θg, πg, ιg) = λ

[
ψθg + (1− ψ)θbA

ψ + (1− ψ)B

]
, (10)

where A ≡ Uι(θ
b, πg, ιg)/Uι(θ

b, πb, ιb) and B ≡ Uπ(θb, πg, ιg)/Uπ(θb, πb, ιb). The figure corre-
sponds to cases where A and B are approximately 1.

Proposition 1. If λ > 1 then the optimal menu features incomplete insurance for both types,
i.e., ιi < m for i ∈ {b, g}.

Proof. First, note that the slope of the indifference curve at the full insurance level of in-
demnity always equals θi or

MRS(θi, πi,m) =
θiu′(ω − πi −m+ ιi)

θiu′(ω − πi −m+ ιi) + (1− θi)u′(ω − πi)

∣∣∣
ιi=m

= θi, (11)

for all πi. Second, note that the slope of the indifference curve declines with the level of
indemnity or

∂MRS(θi, πi, ιi)

∂ιi
=

θi(1− θi)u′′(cNH)u′(co)

[θiu′(cNH) + (1− θi)u′(co)]2
< 0. (12)
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The good type is always under-insured, regardless of whether the optimal contract is pooling
or separating. To see this for the optimal pooling contract (πp, ιp), combine Equation (8)
with Equation (11) to obtain the following inequality

MRS(θg, πp, ιp) = λη > θg = MRS(θg, πp,m),

which holds when λ > 1 since η = ψθg + (1 − ψ)θb ≥ θg. Then it follows from Equation
(12) that ιp < m. If instead the equilibrium is separating then combine the expression for
Equation (10) and Equation (11) to obtain

MRS(θg, πg, ιg) = λ

[
ψθg + (1− ψ)θbA

ψ + (1− ψ)B

]
> θg = MRS(θg, πg,m),

where A ≡ Uι(θ
b, πg, ιg)/Uι(θ

b, πb, ιb) and B ≡ Uπ(θb, πg, ιg)/Uπ(θb, πb, ιb). The inequality
holds for λ ≥ 1 since under the single-crossing property any incentive compatible separating
contract must be such that πg < πb which implies that

A =
θbu′(cgNH)

θbu′(cbNH)
>
θbu′(cgNH) + (1− θb)u′(cgo)
θbu′(cbNH) + (1− θb)u′(cbo)

= B,

where ciNH = ω −m + ιi − πi and cio = ω − πi. Thus, from Equation (12), ιg < m. Finally,
combine Equation (7) and Equation (11) to obtain

MRS(θb, πb, ιb) = λθb > θb = MRS(θb, πb,m),

which holds when λ > 1. So, from Equation (12), ιb < m.

Proposition 2. There will be no trade, i.e., the optimal menu will consist of a single (0, 0)
contract iff

MRS(θb, 0, 0) ≤ λθb, (13)

MRS(θg, 0, 0) ≤ λη, (14)

both hold.

Proof. Assume that u is strictly concave so that u′(·) > 0 and u′′(·) < 0 and γ = 0. First,
we will show that if Equations (13) and (14) hold then the optimal menu will be a single
(0, 0) contract.

Part 1: We will show that if Equation (13) holds then the optimal menu must be a
pooling menu. Suppose the optimal menu features a contract for the good types (πg, ιg)
with ιg ≥ πg ≥ 0 and a contract for the bad types (πb, ιb) with ιb ≥ πb ≥ 0. The following
inequalities hold:

θbλ ≥MRS(θb, 0, 0) ≥MRS(θg, ιg, πg). (15)

The first inequality is Equation (13) and the second follows from u′(·) > 0, ιg ≥ πg ≥ 0, and
θb > θg. By single-crossing we have that πb ≥ πg and ιb ≥ ιg. This together with the fact
that u is strictly concave means that

πb − πg ≤MRS(θg, ιg, πg)(ιb − ιg). (16)
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Combining (15) and (16) yields

πb − πg ≤ θbλ(ιb − ιg), (17)

and rearranging gives

πg − θbλιg ≥ πb − θbλιb). (18)

However, this implies that giving the bad types (πg, ιg) which they value as equal to (πb, ιb)
does not reduce (and may increase) profits. The only way this can be is if (πg, ιg) = (πb, ιb) ≡
(π, ι).

Part 2: We will show that if Equation (14) holds then the optimal pooling contract must
be a (0, 0) contract. If π > 0 and ι > 0 then the following inequalities hold:

ηλ ≥MRS(θg, 0, 0) > MRS(θg, ι, π). (19)

The first inequality is Equation (14) and the second follows from u′(·) > 0 and ι ≥ π > 0.
Thus (π, ι) does not satisfy the first-order optimality conditions for a pooling contract. The
pooling contract must be (0, 0).

Now, we will show that if the optimal menu is a single (0, 0) contract then Equations (13)
and (14) hold. Suppose Equation (13) does not hold. Then there exists a menu that gives
(0, 0) to good types and a small amount of insurance to bad types with a contract (πb, ιb)
that satisfies

MRS(θb, πb, ιb) ≥ λθb,

and with a premium chosen such that U(θb, πb, ιb) = U(θb, 0, 0). This menu satisfies all the
constraints of the insurer’s problem and delivers higher profits to the insurer. Thus the
optimal menu can not consistent of a single (0, 0) contract.

Suppose Equation (14) does not hold. Then there exists a pooling contract (π, ι) that
gives a small amount of insurance to both types and satisfies

MRS(θg, π, ι) ≥ λη,

with the premium such that U(θg, π, ι) = U(θg, 0, 0). This menu satisfies all the constraints
of the insurer’s problem and delivers higher profits to the insurer. Thus the optimal menu
can not consistent of a single (0, 0) contract.

Intuition: No trade equilibria occur when the amount individuals are willing to pay for
even a small positive separating or pooling equilibrium is less than the amount required to
provide nonnegative profits to the insurer. Condition (13) rules out profitable separating
menus where only bad types have positive insurance, such as the one illustrated in Figure 1e
in the paper. Condition (14) rules out profitable pooling and separating menus where both
types are offered positive insurance.
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1.2 Additional material for Section 3.2 of the paper

The insurer’s problem in the version of the one-period model discussed in Section 3.2 of the
paper (Medicaid but no administrative costs) is

max
πg ,ιg ,πb,ιb

ψ
{
πg − θgιg

}
+ (1− ψ)

{
πb − θbιb

}
, (20)

subject to

(PCi) U(θi, πi, ιi)− U(θi, 0, 0) ≥ 0, i ∈ {g, b}, (21)

(ICi) U(θi, πi, ιi)− U(θi, πj, ιj) ≥ 0, i, j ∈ {g, b}, i 6= j, (22)

where an individual’s utility function is

U(θi, πi, ιi) =

∫ ω

ω

[
θiu(ciNH(ω)) + (1− θi)u(cio(ω))

]
dH(ω), (23)

with

cio(ω) = ω − πi, (24)

ciNH(ω) = ω + TR(ω, πi, ιi)− πi −m+ ιi. (25)

The Medicaid transfer is defined by Equation (4) in the paper.
We first show that, if u′(·) > 0, the single-crossing property continues to obtain when

Medicaid is present and the endowment is stochastic.

Lemma 1. (Single-crossing Property) If u′(·) > 0, the single-crossing property holds
when the endowment is stochastic and Medicaid is present with cNH > 0.

Proof. Denote h(·) as the density function associated with the distribution H(·) and define
ω̂(π, ι) ≡ cNH +m− ι+ π. Note that by Equation (4) in the paper, Medicaid transfers are

zero for all ω ≥ ω̂ and positive for all ω < ω̂. The proof shows that ∂MRS(θ,π,ι)
∂θ

> 0 for all
π, ι ∈ IR+. Recall that

MRS(θ, π, ι) = −Uι(θ, π, ι)
Uπ(θ, π, ι)

,

where

Uι(θ, π, ι) = θ

∫ ω̄

ω̂

u′(cNH)dH(ω) > 0, (26)

Uπ(θ, π, ι) = −Uι(θ, π, ι)− (1− θ)B < 0, (27)

with B ≡
∫ ω
ω
u′(co)dH(ω) > 0. Differentiating the MRS with respect to θ yields

∂MRS

∂θ
= −UιθUπ − θUιUπθ

U2
π

, (28)
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where

Uιθ = θ−1Uι > 0, (29)

Uπθ = −Uιθ +B = −θ−1Uι +B, (30)

and the arguments are omitted to save space. Using Equations (26)–(30) it is easy to show
that

∂MRS

∂θ
=
BUιθ
θU2

π

> 0.

Figure 1 illustrates how the optimal contracts, profits and Medicaid takeup rates evolve
as the Medicaid consumption floor, cNH , is increased from zero in the setup with endowment
uncertainty. The figure is divided into 5 distinct regions. In region 1, the consumption
floor is so low that even if an individual has no private LTCI and the smallest realization
of the endowment he will not qualify for Medicaid. In this region, Medicaid has no effect
on the optimal contracts. In region 2, Medicaid influences the contracts even though, in
equilibrium, neither type receives Medicaid transfers. In this region, Medicaid has a similar
effect to that illustrated in Figure 2b in the paper. For some realizations of the endowment,
good types qualify for Medicaid if the contract is (0, 0). This tightens their participation
constraint and the contract offered to them has to be improved. A better contract for good
types tightens, in turn, the incentive compatibility constraint for bad types. The insurer
responds by reducing premiums for both types, and the indemnity of the good types and
loads on both types fall. Since Medicaid’s presence has resulted in more favorable contracts
for individuals, the insurer’s profits fall. In region 3, Medicaid has the same effects as in
region 2 but now, in addition, both types receive Medicaid benefits in equilibrium for some
realizations of ω. As discussed above, the partial insurance of NH shocks via Medicaid results
in optimal contracts that feature partial coverage and, in this region, both types have less
than full private insurance. Proposition 3 provides a sufficient condition for this to occur.

Proposition 3. If ω < cNH then the optimal menu features incomplete insurance for both
types, i.e., ιi < m for i ∈ {b, g}.

Proof. Denote h(·) as the density function associated with the distribution H(·) and define
ω̂(π, ι) ≡ cNH +m− ι+ π. Note that by Equation (4) in the paper, Medicaid transfers are
zero for all ω ≥ ω̂ and positive for all ω < ω̂.

We start by showing that if ω < cNH then the optimal contract for any type i ∈ {b, g},
(πi, ιi), is such that ω̂(πi, ιi) > ω. Suppose instead that ω̂(πi, ιi) ≤ ω. In this case, no one
of type i is on Medicaid in equilibrium. The utility function, Equation (6) in the paper, can
be stated as

U(θi, πi, ιi) =

∫ ω

ω

[
θiu(cNH) + (1− θi)u(co)

]
dH(ω),
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(d) Fraction of NH entrants on Medicaid

Figure 1: Impact of varying the Medicaid consumption floor, cNH , on the indemnity-loss
ratio, loads, profits, and the fraction of NH entrants on Medicaid when the endowment is
stochastic.

where cNH = ω −m+ ιi − πi and co = ω − πi, and the marginal rate of substitution is

MRS(θi, πi, ιi) =
θi
∫ ω
ω
u′(cNH)dH(ω)

θi
∫ ω
ω
u′(cNH)dH(ω) + (1− θi)

∫ ω
ω
u′(co)dH(ω)

.

Following the same proof strategy as that of Proposition 1 it is easy to show that if λ ≥ 1
then ιi ≤ m for i ∈ {g, b}. However, since ω < cNH we have

cNH +m− ιi + πi ≡ ω̂(πi, ιi) ≤ ω < cNH ,

which implies that ιi− πi > m and since πi > 0 it must be that ιi > m, a contradiction. We
have established that the equilibrium contract for each type i ∈ {g, b} must be such that
ω̂(πi, ιi) > ω.

If ω̂(πi, ιi) ≥ ω then everyone of type i is on Medicaid in equilibrium and the utility
function, Equation (6) in the paper, can be stated as

U(θi, πi, ιi) =

∫ ω

ω

[
θiu(cNH) + (1− θi)u(co)

]
dH(ω),
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where co = ω − πi. In this case, MRS(θi, πi, ιi) = 0 for all (πi, ιi) and the optimal contract
is (0, 0).

We now establish that for i ∈ {b, g}, ιi < m holds when ω̂(πi, ιi) ∈ (ω, ω) by showing
that ιi ≥ m leads to a contradiction. The utility function, Equation (6) in the paper, can be
stated as

U(θi, πi, ιi) =

∫ ω̂(πi,ιi)

ω

[
θiu(cNH) + (1− θi)u(co)

]
dH(ω)

+

∫ ω

ω̂(πi,ιi)

[
θiu(cNH) + (1− θi)u(co)

]
dH(ω),

where cNH = ω −m+ ιi − πi and co = ω − πi, and the marginal rate of substitution is

MRS(θi, πi, ιi) =
θi
∫ ω̄
ω̂
u′(cNH)dH(ω)

θi
∫ ω̄
ω̂
u′(cNH)dH(ω) + (1− θi)

∫ ω
ω
u′(co)dH(ω)

,

=

[
1 +

(1− θi)
θi

∫ ω
ω
u′(co)dH(ω)∫ ω̄

ω̂
u′(cNH)dH(ω)

]−1

.

If ιi ≥ m then MRS(θi, πi, ιi) < θi. To see this suppose that MRS(θi, πi, ιi) ≥ θi which
implies that

1 +
(1− θi)
θi

∫ ω
ω
u′(co)dH(ω)∫ ω̄

ω̂
u′(cNH)dH(ω)

≤ 1

θi
⇔∫ ω̂

ω

u′(co)dH(ω) ≤
∫ ω̄

ω̂

[u′(cNH)− u′(co)] dH(ω). (31)

Since ιi ≥ m, we have cNH = ω−πi+ιi−m ≥ co = ω−πi, which implies u′(cNH)−u′(co) ≤ 0.
Equation (31) becomes∫ ω̂

ω

u′(co)dH(ω) ≤
∫ ω̄

ω̂

[u′(cNH)− u′(co)] dH(ω) ≤ 0, (32)

which is a contradiction since u′(c0) > 0 and ω < ω̂ < ω.
Having established that ιi ≥ m implies MRS(θi, πi, ιi) < θi for i ∈ {b, g} the final

step is to show that this condition violates the necessary conditions for an optimal contact.
First consider an optimal pooling contract (πp, ιp). Note that θg < λη since λ ≥ 1 and
η = ψθg + (1 − ψ)θb > θg. So MRS(θg, πp, ιp) < λη when ιp ≥ m. This is a contradiction
because the optimal pooling contract must satisfy Equation (8). It follows that ιp < m.

Now consider an optimal separating contract. First, consider good types. Under the
optimal contract it must be that θg < λ(ψθg + (1−ψ)θbA)/(ψ+ (1−ψ)B), since λ ≥ 1 and
due to single-crossing (established in Lemma 1) and incentive compatibility πg < πb so

A =
θb
∫ ω̄
ω̂(πg ,ιg))

u′(cgNH)dH(ω)

θb
∫ ω̄
ω̂(πb,ιb)

u′(cbNH)dH(ω)
>
θb
∫ ω̄
ω̂(πg ,ιg))

u′(cgNH)dH(ω) + (1− θb)
∫ ω̄
ω
u′(cgo)dH(ω)

θb
∫ ω̄
ω̂(πb,ιb)

u′(cbNH)dH(ω) + (1− θb)
∫ ω̄
ω
u′(cbo)dH(ω)

= B,
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where ciNH = ω − m + ιi − πi and cio = ω − πi. Hence MRS(θg, πg, ιg) < λ(ψθg + (1 −
ψ)θbA)/(ψ + (1 − ψ)B) when ιg ≥ m. This is a contradiction because the equilibrium
contract for good types must satisfy Equation (6). It follows that ιg < m.

Second, consider bad types. We have established that if ιb ≥ m then MRS(θb, πb, ιb) <
θb ≤ λθb since λ ≥ 1. This is a contradiction because the equilibrium contract for bad types
must satisfy Equation (7). It follows that ιb < m.

Recall that Proposition 1 showed that when the price of private insurance is high due
to variable administrative costs incurred by the insurer, the optimal contracts will feature
less than full insurance for both risk types. Similarly, Proposition 3 shows that when the
implicit price of private insurance is high because individuals are at least partially covered
by Medicaid than the optimal contracts will also feature less than full insurance.

In region 4 in the graphs in Figure 1, the consumption floor is so high that the good types,
who’s willingness to pay for private LTCI is lower than the bad types, choose to drop out of
the private LTCI market. Notice that, even though the average loads are declining as the
consumption floor increases, the load on bad types jumps up upon entry into this region. In
regions 1–3, the contracts exhibit cross-subsidization with bad types benefiting from negative
loads and good types facing positive loads. In region 4, the insurer is able to make a small
amount of positive profits by offering a positive contract that is only attractive to the bad
types. Finally, in region 5, Medicaid has a similar effect to that depicted in Figure 2c in
the paper. The consumption floor is so large that there are no terms of trade that generate
positive profits from either type. The insurer denies applicants when the consumption floor
is in this region as the optimal menus consist of a single (0, 0) contract.

Due to the non-convexities Medicaid creates, conditions (13) and (14) in Proposition 2
are no longer sufficient conditions for coverage denials to occur, and, although still necessary,
are not very useful. Proposition 4 provides a stronger set of necessary conditions for coverage
denials in the presence of Medicaid and a stochastic endowment.

Proposition 4. If the optimal menu is a (0, 0) pooling contract then

U(θb, λθbι, ι) < U(θb, 0, 0), ∀ι ∈ IR+, (33)

and

U(θg, ληι, ι) < U(θg, 0, 0), ∀ι ∈ IR+. (34)

Proof. The proposition is proved by showing that if the conditions don’t hold, one can find
a menu with at least one nonzero contract that satisfies all the constraints and delivers
non-negative profits.

First, assume that condition (33) does not hold but that condition (34) does. If (33) does
not obtain, there exists ι ∈ IR+ such that

U(θb, λθbι, ι) ≥ U(θb, 0, 0). (35)

Give bad types (λθbι, ι) and good types (0, 0). Under this menu the insurer’s profits are

Π = (1− ψ)λθbι+ ψ0− (1− ψ)λθbι− ψ0 = 0;
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the participation constraint for the bad types, which is also their incentive compatibility
constraint, holds by condition (35); the participation constraint of the good types is trivially
satisfied; and the incentive compatibility constraint for the good types is satisfied since

U(θg, λθbι, ι) < U(θg, ληι, ι) < U(θg, 0, 0),

where the first inequality follows from the fact that η < θb and the second from condition
(34).

Second, assume that condition (34) does not hold which means there exists ι ∈ IR+ such
that

U(θg, ληι, ι) ≥ U(θg, 0, 0). (36)

Give both types (ληι, ι). Under this pooling contract the insurer’s profits are

Π = ληι− ληι = 0,

the participation constraint of the good types holds by condition (36), and the participation
constraint for the bad types holds since condition (36) holds and U satisfies the single-crossing
property established in Lemma (1). Note that the incentive compatibility constraints are
trivially satisfied since both types get the same contract.

If condition (33) fails, then one can find a profitable contract that bad types would take,
and, if condition (34) fails, then one can find a profitable pooling contract that good types
would take. The conditions are not sufficient because, while they rule out profitable pooling
contracts and separating contracts where good types get no insurance, they do not rule
out separating contracts where both types get positive insurance. Absent Medicaid, there
can never exist a separating contract that increases profits if the optimal pooling contract is
(0, 0). However, the non-convexities introduced by Medicaid break this property. As a result,
even when the optimal pooling contract generates negative profits, a profitable separating
contract might still exist.

Figure 1 highlights some important distinctions between our model, where contracts are
optimal choices of an issuer, and previous research by, for instance, Brown and Finkelstein
(2008), Mommaerts (2015), and Ko (2016), who model demand-side distortions in the LTCI
market but set contracts exogenously. In regions 2 and 3, notice that Medicaid’s presence
only impacts the pricing and coverage of the optimal private contracts. In these regions,
the insurer responds to the reduced demand for private LTCI by adjusting the terms of
the contracts but still offers positive insurance. In contrast, in regions 4 and 5, Medicaid’s
presence also impacts the fraction of individuals who have any private LTCI. Notice that
the Medicaid recipiency rates of both types increase as the consumption floor is increased
in these regions. This means that, even though good types do not have LTCI in region
4 and no individuals have it in region 5, Medicaid is covering their NH costs only for a
subset of the endowment space. For some realizations of ω, they self-insure. Thus, in these
regions, Medicaid is crowding-out demand for private LTCI despite providing only incomplete
coverage itself. This crowding-out effect is also present in models with exogenous contracts,
however, the effects of Medicaid on the terms of positive contracts is not. Thus, allowing the
insurer to adjust the contracts in response to the presence of Medicaid is important because,
if the terms of the contracts cannot adjust, then the crowding-out effect of Medicaid on the
size of the LTCI market will be overstated.
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1.3 Varying Denial Rates across Risk Groups

The analysis in Sections 3.1 and 3.2 of the paper focuses on the problem of an insurer
that offers insurance to a single risk group. We now turn to describe how the extent of
denials changes as we vary observable characteristics of individuals. This discussion provides
intuition for the results found using the quantitative model which features an environment
with a rich structure of public information and thus multiple risk groups.

One data fact we want the model to account for is that those with lower wealth have
lower LTCI takeup rates. An explanation for this observation is that risk groups with low
expected endowments are more likely to be denied coverage by the insurer due to Medicaid.
The following proposition formalizes this claim.

Proposition 5. When ω − m ≤ cNH , the possibility of a denial in equilibrium increases
if the distribution of endowments on [ω, ω] is given by H1(·) instead of H(·) where H1(·) is
first-order stochastically dominated by H(·).

Proof. It is useful to express Equations (33)–(34) as

U(θi, πi, ι)− U(θi, 0, 0) < 0, ∀ι ∈ IR+, i ∈ {g, b}, (37)

where

U(θi, πi, ι) =

∫ ω

ω

[
θiu(max(cNH , ω − πi −m+ ι)) + (1− θi)u(ω − πi)

]
dH(ω),

with

πi =

{
λθbι, if i = b,
ληι, if i = g.

Without loss of generality, assume that m ≥ ι ≥ π > 0.
Let ∆U(H) and ∆U(H1) represent U(θi, πi, ι) − U(θi, 0, 0) when the endowment distri-

bution is given by H(·) and H1(·), respectively. Then

∆U(H) =

∫ ω

ω

ũ(ω)dH(ω),

and

∆U(H1) =

∫ ω

ω

ũ(ω)dH1(ω),

where

ũ(ω) =
[
θiu(max(cNH , ω − πi −m+ ι)) + (1− θi)u(ω − πi)

]
−

[θiu(max(cNH , ω −m)) + (1− θi)u(ω)
]
.

If ũ(ω) is non-decreasing then ∆U(H) ≥ ∆U(H1) and denials are weakly more likely under
H1 than H. When ω −m ≤ cNH we have

ũ(ω) =
[
θiu(max(cNH , ω − πi −m+ ι)) + (1− θi)u(ω − πi)

]
−
[
θiu(cNH) + (1− θi)u(ω)

]
,
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and

dũ(ω)

dω
=

{
θiu′(ω − πi −m+ ι) + (1− θi)[u′(ω − π)− u′(ω)], ω − πi + ι > cNH ,
(1− θi)[u′(ω − πi)− u′(ω)], ω − πi + ι ≤ cNH .

It is easy to see that dũ(ω)
dω

> 0.

It immediately follows from Proposition 5 that the possibility of denials increases if the
expected endowment decreases when ω − m ≤ cNH . When ω − m > cNH , decreasing the
expected endowment may also lead to an increased possibility of denial. However, in this
case, it is also possible that the likelihood of denials goes down since, absent Medicaid,
lowering an individual’s endowment raises his demand for insurance.

We also want the model to account for the fact that LTCI takeup rates are declining in
frailty and that insurers are more likely to deny frail individuals. In the quantitative model,
individuals vary by endowments and frailty, both of which are observable by the insurer, and
the distribution of private information varies across these observable types. The following
proposition shows two ways of varying the distribution of private information with frailty to
generate an increasing possibility of denial. Note that the proof is for the no Medicaid case,
although, as the quantitative results illustrate, the proposition holds even when Medicaid is
present.

Proposition 6. When λ > 1 and θb is sufficiently close to 1, the possibility of a denial in
equilibrium increases if:

1. θb increases;

2. θb increases and θg decreases such that the mean NH entry probability η ≡ ψθg + (1−
ψ)θb does not change.

Proof. Without Medicaid, denial will occur in equilibrium iff

f b(θb) ≡ λθb −MRS(θb, 0, 0) ≥ 0, (38)

and

f g(θg, θb) ≡ λη −MRS(θg, 0, 0) ≥ 0, (39)

where η ≡ ψθg + (1− ψ)θb.

1. Differentiating f b with respect to θb yields

f b(θb)

dθb
= λ−

∫ ω
ω
u′(ω −m)dH(ω)

∫ ω
ω
u(ω)dH(ω)

[θb
∫ ω
ω
u′(ω −m)dH(ω) + (1− θb)

∫ ω
ω
u′(ω)dH(ω)]2

. (40)

When θb = 1, Equation (40) is positive since

f b(θb)

dθb
|θb=1 = λ−

∫ ω
ω
u′(ω)dH(ω)∫ ω

ω
u′(ω −m)dH(ω)

,
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λ ≥ 1 and u′(ω) < u′(ω − m) for m > 0. It is easy to see that Equation (40) is
increasing in θb. Thus if θb is sufficiently close to 1, increasing θb will increase f b.
Differentiating f g with respect to θb yields

f g(θg, θb)

dθb
= λ(1− ψ) > 0.

Thus increasing θb increases f g.

2. The proof that f b is increases is the same as in 1 since f b does not depend on θg. The
first term of f g does not change. The second term only depends θg and differentiating
it with respect to θg yields

dMRS(θg, 0, 0)

dθg
=

∫ ω
ω
u′(ω −m)dH(ω)

∫ ω
ω
u(ω)dH(ω)

[θg
∫ ω
ω
u′(ω −m)dH(ω) + (1− θg)

∫ ω
ω
u′(ω)dH(ω)]2

> 0.

So f g increases when θg declines.

Proposition 6 presents two ways to increase the possibility of coverage denials occurring.
Either of the two ways can, in theory, be used to generate decreasing LTCI takeup rates
with frailty. If, as in way 1, only θb increases then both the mean and the dispersion of the
NH entry probabilities will increase. However, way 2 states that increasing the dispersion of
entry probabilities while holding the mean fixed by varying both θb and θg can also generate
increased denial rates. In short, to generate an increase in denial rates with frailty, both
ways require an increase in the dispersion in NH entry probabilities with frailty. However,
way 1 also requires an increase in the mean.

The fact that both ways of increasing the denial rates requires an increase in dispersion of
private information is consistent with the empirical findings of Hendren (2013) that adverse
selection is more severe among individuals that are more likely to denied coverage by LTC
insurers. In addition, we show in Section 4 in the paper that the increase in dispersion is
consistent with the pattern of NH entry probabilities in the data, but the increase in the
mean implied by case 1 is inconsistent. Thus both θb and θg must vary with frailty, as in
case 2, to generate patterns of both LTCI takeup rates and NH entry probabilities that are
consistent with the data. Note that Hendren (2013) also presents a theory of how private
information can generate no-trade equilibria (denials). His mechanism, however, is different
from ours. We generate no-trade equilibria by modeling administrative costs on the insurer
and Medicaid. In his model, there is a continuum of private types and he allows there to be
a positive mass of individuals who have probability 1 of incurring the loss. He shows that,
under this assumption, the presence of private information can lead to no-trade equilibria.
To activate his mechanism in our model with 2 private types we would have to assume that
θb = 1. He also shows that the possibility of denials increases as the magnitude of private
information increases. In our model, an increase in the magnitude of private information
would be equivalent to an increase in θb − θg and, with θb < 1, does not necessarily increase
the possibility of denial. For example, increasing θb− θg and at the same time lowering both
θb and θg can reduce the probability of denial.
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1.4 Variable costs proportional to claims versus premia

It is easy to see that the setup with variable costs proportional to premia is equivalent to a
setup with variable costs proportional to indemnities. Let λ̃ ∈ [0, 1) be a cost proportional
to the premium and γ̃ ≥ 0 be a fixed cost. Then the insurer’s maximization problem is given
by

max
πi,ιi

ψ
{
λ̃πg − θg

[
ιg + γ̃I(ιg > 0)

]}
+ (1− ψ)

{
λ̃πb − θb

[
ιb + γ̃I(ιb > 0)

]}
, (41)

subject to (2) and (3). The objective function can be rewritten as

max
πi,ιi

λ̃

{
ψ

{
πg − θg

[1

λ̃
ιg +

γ̃

λ̃
I(ιg > 0)

]}
+ (1− ψ)

{
λ̃πb − θb

[1

λ̃
ιb +

γ̃

λ̃
I(ιb > 0)

]}}
, (42)

If λ̃ = 1/λ and γ̃ = γ/λ then the optimization problem above is equivalent to the one
with costs proportional to indemnity, as stated by equations (1)–(3), up to the scaler in the
profits. That is, the optimal contracts are identical under both setups, but profits are lower
when costs are proportional to the premium.

1.5 Adding more periods to the quantitative model

In this section we show that period 1 of our 3 period model can easily be replaced with
multiple periods in which the young make consumption and savings decisions at annual
frequencies. To simplify the analysis we abstract from initial differences in frailty and assume
that the entire working-age endowment is received when individuals retire. In our three
period model, working-aged individuals face no risks. Thus, the essence of the savings
decision of a working-aged person in our model is captured by the following two period
consumption-savings problem for an individual where for convenience we assume that the
endowment, ωo is received at the start of the second and final period of life, V (ao) is the value
function of an individual at the point of retirement, and E is the expectations operator.

max
cy ,ao

c1−σ
y

1− σ
+ βEV (ao)

s.t.

cy + ao/R = ωo.

The FONC is:

c∗y = RβEV ′(ao).

and combining the FONC with the budget constraint yields the following expression for ao:

a0 =
(
ωo − [RβEV ′(ao)]

−1/σ
)
R.
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Suppose instead that an individual works for J years before retiring. The problem is given
by

max
{cj}Jj=1,ĉ0

J∑
j=1

γj−1
c1−σ
j

1− σ
+ γJEV (ao)

s.t.

J∑
j=1

cj/R̂
j−1 + âo/R̂

J = ωo.

The FONCs for this problem are:

R̂γEV ′(ao) = c−σJ ,

c−σ1 = c−σj (γR̂)j−1.

Using these expressions we can express ao as:

a0 =

[
ωo −

J∑
j=1

[γR̂]
j−1
σ

R̂j−1

(
(R̂γ)JEV ′(ao)

)]
R̂J . (43)

Next note that if there are 40 years of youth then γ = β1/J and, for a given R, Equation
(43) can be solved to find the corresponding value of R̂ that delivers the same assets at
retirement, ao, in the two problems.

1.6 Cast of model characters

Table 1 provides a list of the model parameters with brief descriptions.

2 Details of the data work

Our HRS sample is constructed from the 1992 to 2012 waves of HRS and AHEAD. The
sample is essentially the same as Braun et al. (2015) and Kopecky and Koreshkova (2014).
Beyond adding additional data from 1992, 1994, and 2012, there are a few other changes.
There is no censoring at -500 and 500 for asset values near 0. We assign an individual’s 1998
weight (or post-1998 mean weight, if their 1998 weight is 0) to pre-1998 waves where their
weight is 0. The main definitional novelties/changes are now provided. An individual is
retired if his labor earnings are less than $1500 (in 2000 dollars). An individual is considered
to have ever had long-term care insurance if they report having been covered in half or more
of their observed waves.

Nursing home event A nursing home event occurs when an individual spends 100 days
or more in a nursing home within the approximately two year span between HRS interviews
or within the period between their last interview and death. If the individual dies less than
100 days after their last interview, but at the time of their death had been in a nursing home
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Table 1: Model Variables and Parameters

Notation Designation
f frailty status
w endowment vector: [wy, wo]
i private NH entry type, either good g (low) or bad b (high)

sf,w survival probability of individual of type (f,w)
θif,w probability of nursing home entry for individual of type (i, f,w)
πif,w LTC insurance premium for individual of type (i, f,w)
ιif,w LTC insurance benefit (indemnity) for individual of type (i, f,w)
ψ fraction of individuals realizing low probability of nursing home entry
λ variable (proportional) cost of paying insurance claims
γ fixed cost of paying insurance claims
κ random fraction of retirement wealth consumed prior to nursing home entry
β discount factor between working-age and retirement periods of life
α discount factor between retirement and nursing home entry subperiods
m nursing home cost
r net rate of return on savings
a assets saved for retirement
cy consumption of working-age individuals
ci,κo consumption of a retired type-(i, κ) individual who never enters nursing home

ci,κNH consumption of nursing home resident of type (i, κ)
cNH Medicaid’s consumption floor in nursing home

for over 100 days, this also counts as a nursing home event. In the HRS, there are several
(sometimes inconsistent) variables that provide information about the number of days spent
in a nursing home. From the RAND dataset, we use the total nursing nights over all stays
during the wave, as well as the number of days one has been in a nursing home (conditional
on being in a nursing home at the time of the interview). This information is also pulled
from the exit data, as well as the date of entry to a nursing home, provided the individual
died there. Interview and death dates are used when a respondent reports having been
continuously in a nursing home since the previous wave. Since the information is sometimes
conflicting, and one piece often missing when another observed, a nursing home event is
assigned if any of the variables suggest a person met the criteria described above.

Permanent Income To calculate permanent income, first sum the household heads social
security and pension income and average this over all waves in which the household head
is retired. The cumulative distribution of this average is defined as the permanent income,
which ranges from 0 to 1. For singles, the household head is the respondent, and for couples
it is the male.

Wealth We use the wealth variable ATOTA which is the sum of the value of owned real es-
tate (including primary residence), vehicles, businesses, IRS/Keogh accounts, stocks, bonds,
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Table 2: Percentage of HRS respondents who would answer “Yes” to at least one LTCI
prescreening question.

Age
55–56 60–61 65–66

All 41.8 43.7 49.5
Top Half of Wealth Distribution Only 30.8 33.6 39.3

Data source: Authors’ calculations using our HRS sample.

checking/savings accounts, CDs, treasury bills and “other savings and assets” less any debt
reported.

2.1 Denials

Many applications for LTCI are denied. Murtaugh et al. (1995) in one of the earliest analyses
of LTCI underwriting estimates that 12–23% of 65 year olds, if they applied, would be denied
coverage by insurers because of poor health. Their estimates are based on the National
Mortality Followback Survey. Since their analysis, underwriting standards in the LTCI
market have become more strict. We estimate denial rates of between 36% and 56% for
55–65 year olds by applying underwriting guidelines from Genworth and Mutual of Omaha
to a sample of HRS individuals.

To understand how we arrive at these figures, it is helpful to explain how LTCI under-
writing works. Underwriting occurs in two stages. In the first stage, individuals are queried
about their prior LTC events, pre-existing health conditions, current physical and mental ca-
pabilities, and lifestyle. Some common questions include: Do you require human assistance
to perform any of your activities of daily living? Are you currently receiving home health
care or have you recently been in a NH? Have you ever been diagnosed with or consulted a
medical professional for the following: a long list of diseases that includes diabetes, memory
loss, cancer, mental illness, heart disease? Do you currently use or need any of the following:
wheelchair, walker, cane, oxygen? Do you currently receive disability benefits, social security
disability benefits, or Medicaid?1 A positive answer to any one of these questions is sufficient
for the insurers to deny applicants before they have even submitted a formal application.
Many of these same questions are asked to HRS participants. As Table 2 shows, the fraction
of individuals in our HRS sample who would respond affirmatively to at least one question
is high and ranges from 40.5–to 49.6% depending on age. Denial rates are also high in the
top half of the wealth distribution ranging from 30.8% –to 39.3%. Question 3 pertaining
to previously diagnosed diseases received the highest frequency of positive responses. If we
are conservative and omit question 3 the prescreening declination rate ranges from 17.5–
22.5% for all individuals and from 10.0% –12.1% for individuals in the top half of the wealth
distribution.

If applicants pass the first stage, they are invited to make a formal application. Medical

1Source: 2010 Report on the Actuarial Marketing and Legal Analyses of the Class Program
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records and blood and urine samples are collected and the applicants cognitive skills are
tested. One in five formal applications are denied coverage based on industry surveys (see
Thau et al., 2014). Assuming a 20% denial rate for the second round, the overall denial rate
is 55.6% for 55–66 years old in our HRS sample using all questions and 35.9% if question
three is omitted. For individuals in the top half of the wealth distribution the denial rates
are 47.7% and 28.0% respectively.

2.2 Construction of the Frailty Index

Table 3 lists the variables we used to construct the frailty index for HRS respondents. The
choice of these variables is based on Genworth and Mutual of Omaha LTCI underwriting
guidelines. To construct the frailty index, first sum the variables listed in the first column
of Table 3, assigning each a value according to the second column. Then divide this sum
by the total number of variables observed for the individual in the year, as long as the
total includes 30 or more variables. The construction of this frailty index mostly follows the
guidelines laid out in Searle et al. (2008), and uses a set of HRS variables similar to the
index created in Yang and Lee (2009). There are a couple of differences however. Primarily,
a few variables that do not necessarily increase with age (e.g. drinking > 15 drinks per week
and smoking) were included. Also, cognitive tests are broken into parts which each count
as separate variables, essentially increasing their weight in the index relative to Searle et al.
(2008), which uses only a single variable for cognitive impairment. Nevertheless, our frailty
distribution still closely resembles those of frailty indices used in other papers.

2.3 Evidence of private information

Hendren (2013) finds that self-assessed NH entry risk is only predictive of a NH event for
individuals who would likely be denied coverage by insurers. Hendren’s measure of a NH
event is independent of the length of stay. Since we focus on stays that are at least 100
days, we repeat the logit analysis of Hendren (2013) using our definition of a NH stay and
our HRS sample. We get qualitatively similar results. We restrict the sample to individuals
ages 65–80. We find evidence of private information at the 10 year horizon (but not at the
6 year) in a subsample of this sample consisting of individuals who would likely be denied
coverage by insurers. This sample includes individuals who have any ADL/IADL restriction,
past stroke, or past nursing or home care. The p-value for a Wald test which restricts the
coefficients on subjective probabilities to zero is 0.003 at the 10 year horizon and 0.169 at
the 6 year. If all individuals above age 80 are included in the denied sample as well the
p-values at both horizons are less than 0.000. For a sample of individuals who would likely
not be denied we are unable to find evidence of private information. The p-value for a Wald
test which restricts the coefficients on subjective probabilities to zero is 0.210 at the 10 year
horizon and 0.172 at the 6 year.

2.4 LTCI takeup rate patterns controlling for family status

Tables 4 and 5 shows LTCI takeup rates of by frailty and wealth quintiles for married
versus single individuals and individuals with and without children. The general pattern of
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Table 3: Health Variables for Frailty Index Construction

Variable Value
Some difficulty with ADL/IADLs:

Eating Yes=1, No=0
Dressing Yes=1, No=0
Getting in/out of bed Yes=1, No=0
Using the toilet Yes=1, No=0
Bathing/shower Yes=1, No=0
Walking across room Yes=1, No=0
Walking several blocks Yes=1, No=0
Using the telephone Yes=1, No=0
Managing money Yes=1, No=0
Shopping for groceries Yes=1, No=0
Preparing meals Yes=1, No=0
Getting up from chair Yes=1, No=0
Stooping/kneeling/crouching Yes=1, No=0
Lift/carry 10 lbs Yes=1, No=0
Using a map Yes=1, No=0
Taking medications Yes=1, No=0
Climbing 1 flight of stairs Yes=1, No=0
Picking up a dime Yes=1, No=0
Reaching/ extending arms up Yes=1, No=0
Pushing/pulling large objects Yes=1, No=0

Cognitive Impairment:
Immediate Word Recall +.1 for each word not recalled (10 total)*
Delayed Word Recall +.1 for each word not recalled (10 total)*
Serial 7 Test +.2 for each incorrect substraction (5 total)
Backwards Counting Failed test=1, 2nd attempt = .5, 1st attempt = 0
Identifying obejcts & Pres/VP .25 for each incorrect answer (4 total)
Identifying date .25 for each incorrect answer (4 total)

Ever had one of following conditions:
High Blood Pressure Yes=1, No=0
Diabetes Yes=1, No=0
Cancer Yes=1, No=0
Lung disease Yes=1, No=0
Heart disease Yes=1, No=0
Stroke Yes=1, No=0
Psychological problems Yes=1, No=0
Arthritis Yes=1, No=0

BMI ≥ 30 Yes=1, No=0
Drinks 15+ alcoholic drinks per week Yes=1, No=0
Smokes Now Yes=1, No=0
Has smoked ever Yes=1, No=0

*For the 1994 HRS cohort, 40 questions were asked (instead of 20) for word recall. In this
year, each missed question receives weight 0.05.
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Table 4: LTCI takeup rates by wealth and frailty for married and not married individuals

Married Not Married
Frailty Wealth Quintile Wealth Quintile

Quintile 1 2 3 4 5 1 2 3 4 5
1 0.011 0.044 0.095 0.151 0.242 0.010 0.093 0.108 0.134 0.205
2 0.031 0.057 0.119 0.156 0.219 0.012 0.017 0.047 0.163 0.175
3 0.011 0.027 0.084 0.141 0.212 0.031 0.038 0.091 0.092 0.174
4 0.014 0.036 0.068 0.098 0.178 0.016 0.021 0.069 0.145 0.127
5 0.026 0.026 0.040 0.095 0.076 0.007 0.032 0.066 0.122 0.145

For frailty (rows) Quintile 5 has the highest frailty and for wealth (columns) Quintile 5 has the highest
wealth. Data source: 62–72 year olds in our HRS sample.

Table 5: LTCI takeup rates by wealth and frailty for individuals with and without children

Have Children Do Not Have Children
Frailty Wealth Quintile Wealth Quintile

Quintile 1 2 3 4 5 1 2 3 4 5
1 0.012 0.058 0.100 0.146 0.221 0.000 0.059 0.076 0.186 0.337
2 0.017 0.051 0.103 0.153 0.196 0.061 0.000 0.064 0.238 0.314
3 0.022 0.033 0.085 0.132 0.202 0.022 0.000 0.088 0.071 0.214
4 0.017 0.033 0.067 0.106 0.142 0.000 0.021 0.130 0.178 0.271
5 0.017 0.025 0.043 0.101 0.101 0.001 0.021 0.239 0.132 0.173

For frailty (rows) Quintile 5 has the highest frailty and for wealth (columns) Quintile 5 has the highest
wealth. Data source: 62–72 year olds in our HRS sample.

takeup rates by frailty and wealth are robust to controlling for martial status and children.
LTCI takeup rates increase with wealth and decline with frailty for both married and single
individuals and for both individuals with and those without children. Comparing the levels
of takeup rates across married and single individuals shows that in many wealth and frailty
quintiles there is no systematic difference between them. The only discernible differences
between individuals with and without children are that wealthy individuals without children,
those in quintiles 4 and 5 of the wealth distribution, tend to have slightly higher takeup rates
then those with children.

2.5 Description of the auxiliary simulation model

To obtain survival and lifetime NH entry probabilities by frailty and PE quintile groups,
we use an auxiliary simulation model similar to that in Hurd et al. (2013). First, using a
multinomial logit, we estimate transition probabilities between four states that we observe in
the HRS: alive and dead, each with and without a nursing home event in the last two years.
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These probabilities depend on age, PE, NH event status, and frailty, including polynomials
and interactions of these variables. Specifically, age is modeled as a cubic function, frailty as
a quadratic, and the others are both linear. Interactions include age with each of the other
first-order terms, as well as frailty with PE. We also simulate lifetime frailty paths because
we need them since, in contrast to Hurd et al. (2013), we include frailty in the multinomial
logit. This is done using estimates from a fixed effects regression of frailty on lagged frailty,
age, and age squared.

Simulations begin at age 67. To get the initial distribution of explanatory variables, we
first average frailty and population weights across all observations at which an individual is
between ages 62-72. PE and the estimated fixed effect are constant within individuals. The
initial distribution then draws 500,000 times from this person-level weighted distribution.
The model simulates two-year transitions, following the structure of the HRS data, and
assigns age of death by randomly choosing an age between their last living wave and the
death wave.2

3 Computation

Computing an equilibrium in our model is subtle because Medicaid NH benefits are means-
tested and Medicaid is a secondary payer of NH benefits. Individual saving policies exhibit
jumps and the demand for private insurance interacts in subtle ways with q(κ), the distri-
bution of consumption demand shocks.

We start by discretizing the endowment and frailty distributions. The number of grid
points for endowments w is ny = 101 and frailty takes on nf = 5 grid points. The consump-
tion demand shock κ is also discretized: nk = 50.

The specific algorithm for computing an equilibrium proceeds as follows. First, we guess
values for profits (which gives us dividends) and taxes and then we iterate over profits and
taxes until profits converge and taxes satisfy the government budget constraint. In each
iteration, we have to solve for allocations, contracts, and profits for each combination of
endowments and frailty in the discretized state space. For each point in the discertized
state space (ws, fj), s = 1, nw and j = 1, nf , we guess a level of savings: âfj ,ws . Given
âfj ,ws , we then solve for the optimal contracts as follows. The optimal contract for a risk
group depends on which individuals of observable type (ws, fj) qualify for Medicaid if they
incur the NH shock. Thus, it depends on the specific combinations of the κ shock and
the private type i ∈ {g, b} that imply that an individual qualifies for Medicaid. Because
of the non-convexities introduced by Medicaid the Kuhn-Tucker conditions of the insurer’s
problem are not sufficient. However, if one first assumes a distribution of individuals across
Medicaid, then a contract satisfying the Kuhn-Tucker conditions is sufficient. So we solve
for the optimal contract for all feasible combinations of individuals with different κ’s and
i’s receiving Medicaid. The number of cases that has to be considered is large but it can
reduced by the noting that for a given value of κ if a bad type is on Medicaid the good type

2Note that a half year is added to death age to account for the fact that reported ages are the floor of
a respondent’s continuous age. Nursing home entry ages are similarly assigned, but we add only 0.2 years
due to the 100 day requirement of a nursing home event. They are also upwardly bound by death age when
both occur in the same wave.
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Table 6: Model Parameters

Description Parameter Value
Risk aversion coefficient σ 2
Preference discount factor β 0.94
Retirement preference discount factor α 0.20
Interest rate (annualized) r 0.00
Frailty distribution f BETA(1.54,6.30)
Young endowment distribution wy ln(wy) ∼ N (−0.32, 0.64)
Copula parameter ρf,wy -0.29
Demand shock distribution κ 1− κ ∼ truncated log-normal
Demand shock mean µκ 0.6
Demand shock standard deviation σκ 0.071
Fraction of good types ψ 0.709
Nursing home cost m 0.0931
Insurer’s variable cost of paying claims λ 1.195
Insurer’s fixed cost of paying claims γ 0.019
Medicaid consumption floor cNH 0.01855
Welfare consumption floor co 0.01855

is also on Medicaid by the single-crossing property and that if a type i qualifies for Medicaid
for a value of κ he will also qualify for Medicaid for all larger values of κ.

To solve for the optimal contracts for each Medicaid distribution, first we solve for the
optimal pooling contract. Second, we check to see if an optimal separating menu exists. The
contract of type g under the optimal separating menu is the same as the optimal pooling
contract. So we fix the good type’s contract at the optimal pooling one and solve for the
optimal separating contract of the bad type (if it exists).3 The optimal contract for observable
type (ws, fj) under the current guess for savings, âfj ,ws is then the one that maximizes the
insurer’s profits. Finally, we iterate over savings until we find the value of savings that
maximizes expected lifetime utility.

4 Additional Calibration Details

Table 6 list the values of many of the model parameters. The survival probabilities of each
frailty and PE quintile in the quantitative model are shown in the left panel of Figure 2.
The right panel shows the mean lifetime NH entry probability conditional on surviving for
each frailty/PE quintile combination in the model. These NH entry probabilities in the
model match those in the data because we parametrized the model to reproduce the survival
probabilities in the left panel and the unconditional NH entry probabilities in Figure 4 in
the paper.

3If a separating menu doesn’t exist it means one of the inequality constraints is violated.
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Figure 2: The probability of surviving to age 80 or until experiencing a NH stay (left panel)
and the probability that a 65-year old will enter a NH conditional on surviving to age 80 (right
panel) by frailty and PE quintile. The probabilities are based on our auxiliary simulation
model which is estimated using HRS data. NH entry probabilities are for a NH stay of at
least 100 days.

Determination of nursing home cost m. We estimate the average medical and nursing
expense component of NH costs as follows. First, we use data from the Minnesota Office
of the Legislative Auditor (1995) which provides a breakdown of SNF and RCC costs for
5 midwest states in 1994. We adjust each cost in the breakdown using either the CPI or
the medical CPI to create a cost breakdown for the year 2000. Then we calculate the share
of costs due to medical and nursing expenses and the share due to room and board for
each state and average them across states using state population weights. The population
weights are taken from the 2000 U.S. Census. We find that, on average, 76% of SNF and
RCC costs are due to medical and nursing expenses and 24% are room and board. Next,
we obtain estimates of the average annual total costs of SNF and RCC stays in the U.S. in
2000 of $60,000 and $28,099, respectively, from Stewart et al. (2009). Using these and the
shares, we calculate the average annual cost of the medical and nursing expense component
of each type of stay. Finally, we average the annual cost of the medical and nursing expense
component across NH and RCC stays using data from Spillman and Black (2015) on the
fraction of individuals in residential care who are in RCC’s versus SNF’s. We obtain an
average medical and nursing expense component of residential LTC costs of $32,844 per
annum in year 2000. Braun et al. (2015) estimate that the average duration of NH stays
that exceed 90 days is 3.25 years. Medicare provides NH benefits for up to the first 100
days. To account for this, we subtract 100 days resulting in an average benefit period of
2.976 years. Multiplying the annual cost by the average benefit period yields total medical
and nursing costs of a NH stay of $97,743 or a value of m = 0.0931 when scaled by average
lifetime earnings.
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Figure 3: Insurance coverage and loads by frailty quintile.
The left panel reports LTCI indemnities relative to medical costs of a NH stay and the right panel reports

loads for the two private information types: good risks (solid lines) and bad risks (dashed lines). Three
economies are reported: Baseline, Full Information and No Medicaid.

5 Additional Results

5.1 Pricing and Coverage in Baseline and Other Economies

Figures 3 and 4 show how Medicaid and adverse selection influence pricing and coverage at
alternative frailty and PE levels. Removing private information increases the coverage of
both types relative to coverage in the Baseline and reduces the variation in loads. Reducing
the scale of Medicaid also increases the level of coverage for both private information types at
each frailty quintile. However, the loads are also higher. Notice also that coverage increases
monotonically in frailty in the No Medicaid economy.

Figure 4 reports how coverage and loads vary by PE quintile for the same three scenarios.
In the Full Information economy bad risks in PE quintiles 1–4 do not get positive private
insurance. Coverage of good risks in increasing in PE and higher than in the Baseline. Loads
on good risks are lower than in Baseline and humped-shape in PE. In the No Medicaid
economy, as PE increases, bad and good risk types experience lower coverage and slightly
declining loads. Reducing the Medicaid NH benefit floor has a very big impact on the poor.
Their demand for LTCI is inelastic and, as a result, they now face the highest loads but also
receive the most coverage.

5.2 Robustness Analysis

Size of the Medicaid Consumption Floor Our Baseline parameterization of the model
uses the same Medicaid consumption floor as Brown and Finkelstein (2008). They note
that their results are sensitive to the size of this parameter and other empirical work has
sometimes used higher consumption floors. To assess the robustness of our conclusions to
the scale of Medicaid we recalibrated the model positing a Medicaid consumption floor that
is 1.76 times larger than the value in the Baseline economy. This value is at the high end of
previous estimates (see Kopecky and Koreshkova (2014) for a summary of consumption floor
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Figure 4: Insurance coverage and loads by PE quintile.
The left panel reports indemnities relative to the medical cost of a NH stay and the right panel reports
loads for the two private information types: good risks (solid lines) and bad risks (dashed lines). Three

economies are reported: Baseline, Full Information and No Medicaid.

values). Table 7 indicates that Medicaid now has a bigger impact on producing denials among
affluent households. Denial rates are only 18% in wealth quintile 5 if Medicaid is removed.
However, administrative costs and private information continue to be very important among
more affluent individuals. Removing either friction still has a very large impact on denial
rates in PE quintiles 3-5. Denial rates fall to zero in these groups if administrative costs
are removed and they fall by 50% or more if private information is removed. In addition,
administrative costs and private information continue be responsible for the large fraction
of individuals who pay for NH expenses out-of-pocket in the Baseline.

How well can a model do that abstracts from private information? We have found
that the Full Information economy has very high LTCI takeup rates among higher wealth
quintiles and produces an incorrect pattern of takeup rates by frailty in wealth quintiles 4 and
5. Is there a way to remedy these issues with the Full Information economy by recalibrating
it? To explore this possibility we recalibrated the Full Information economy so that it
reproduces the average LTCI takeup rate by increasing fixed and variable administrative costs
in a proportionate fashion. The resulting magnitude of the administrative costs increased
from 32.6% of premium to 49% of premium. The Full Information economy with higher
administrative costs continues to have problems reproducing the pattern of LTCI takeup
rates by wealth and frailty quintile. For instance, LTCI takeup rates in wealth quintile 5 are
now zero. From the perspective of this group these administrative costs are so high that they
prefer to self-insure NH risk. LTCI takeup rates in wealth quintile 4 are positive. However,
they are not declining in frailty as occurs in our HRS data (See Table 2 in the paper). We
also explored lowering the LTCI takeup rates in this economy by varying the θ’s. However,
we could not generate enough variation in the θ’s to reproduce the average level of LTCI
takeup we see in the data nor did varying the θ’s help us reproduce the empirical pattern of
LTCI takeup rates by frailty in the top two wealth quintiles.
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Table 7: Robustness: Denial rates in the Baseline, the No Administrative Costs, the No
Medicaid, and the Full Information Economies with Higher Consumption Floors.

Scenario Baseline No Admin. Costs No Medicaid Full Information
Description λ = 1, γ = 0 cnh = 0.001 θif,w public

Average 90.1 39.0 9.9 48.3
By PE Quintile

1 100 100 15.4 100
2 100 83.3 0.0 99.8
3 82.5 0.0 0.0 31.8
4 86.8 0.0 0.0 0.0
5 75.8 0.0 0.18 50.0

By receiving Medicaid NH benefits conditional on surviving
Would 44.1 35.7 3.1 41.1
Would not 44.9 1.0 0.0 15.2

Denial rates are percentage of individuals who are only offered a single contract of (0, 0) by the insurer. Note
that for PE quintiles that the figures are expressed as a percentage of individuals in that quintile. However,
the bottom two rows of the table are a decomposition of the average denial rate for that economy.

How well can a model do that abstracts from administrative costs? We have
also investigated whether a version of the model with no administrative costs could hit our
calibration targets. It is also a challenge for the model to reproduce low LTCI takeup rates
in high wealth quintiles when administrative costs are zero. Consider, for instance, the group
in wealth and frailty quintile 5. When administrative costs are set to zero the LTCI takeup
rate for this group increases from 0.118 to 0.99. if the nursing home entry rate for bad risks
is increased to one (θb = 1) the LTCI takeup rate falls to 0.96. This model also predicts a
high LTCI takeup rate for this group if assume that one half of all individuals are bad risks
ψ = 0.5 and have NH entry probabilities of one. The model produces a LTCI takeup rate of
0.44 while the LTCI takeup rate for this group in our dataset is only 0.104.

Taken together these results suggest that both private information and administrative
costs are required if the model is to produce LTCI takeup rates that have the same magnitude
and pattern across different wealth and frailty quintiles as our data.

Insurers do pay out at the other end. One reason that has been offered for low LTCI
takeup rates is that people are concerned that insurers will come up with reasons for not
paying out at the time the NH event occurs (see, for instance, Duhigg (2005)). However,
survey evidence suggests that most individuals are happy with the claims filing experience.
A survey conducted in 2015–2016 by LifePlans Inc., a service provider for insurers, found
that 78 percent of claimants found it easy to file a claim.4 Only 6% had a disagreement with
their company about coverage and disagreements in a majority of cases were resolved in favor

4See Lifeplans, Inc. (2016).
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of the policy holder. Taken together they find that only 2% claims filers find themselves in
a situation where they disagree with their insurer and the problem is not resolved to their
satisfaction. Another survey commissioned by the U.S. Department of Health and Human
Services in 2007 produced similar results (See U.S. Department of Health and Human Services
(2007)). It finds that benefits were approved for 95.7% of respondents filing claims and that
of those initially denied benefits more than half subsequently received benefits in the ensuing
12 month period.

Multiple sources of private information and heterogeneous preference discount
rates. We have found that our model with a single source of private information can
account for a broad range of empirical regularities in the U.S. LTCI market including the
correlation puzzle. This is not to say that insurers in this market do not have to contend
with private preference heterogeneity in risk or discount rates. Our analysis, however, does
suggest that these considerations may not be of first-order importance to insurers given the
institutional features in the U.S. market that we have modeled.

To provide a specific example of why multiple sources of private information may not be
of central importance here, consider private differences in preference discount rates. Higher
preference discount rates among frail individuals could possibly help account for denials
among poorer individuals, but, Medicaid is already very effective in producing denials among
poorer and even middle class individuals. So it is not clear that there is a need to appeal
to private differences in discount rates to produce denials in these groups. It is also not
clear that modeling a positive correlation between frailty and privately observed preference
discount rates would be help us in accounting for denials among wealthy frail individuals.
The first order implication of a high preference discount rate is to save less and consume
more and one would thus expect that frail individuals in high wealth quintiles are reasonably
patient.
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